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EFFECT OF DIGITALLY COMPUTED DRIVES ON PERFORMANCE OF 

CONTINUOUS LINEAR SYSTEMS 

Russe l l  V. P a r r i s h  
Langley Research Center 

SUMMARY 

The dependence o f  t he  Bode response upon d i g i t a l  sample rate f o r  first-
and second-order l i n e a r  cont inuous systems dr iven  by a d i g i t a l  computer is  
derived.  Open-loop lead compensation introduced wi th in  t h e  d i g i t a l  computer 
i n  o rde r  t o  i n c r e a s e  t h e  system bandwidth is  a l s o  examined i n  terms o f  der ived  
Bode responses .  This  i n t r o d u c t i o n  of lead terms wi th in  t h e  d i g i t a l  computer 
(open-loop compensation) is shown t o  be e f f e c t i v e  a t  ope ra t ing  f r equenc ie s  
below the Nyquist f requency.  Indeed,  i n  most p r a c t i c a l  a p p l i c a t i o n s ,  empir ica l  
de te rmina t ion  o f  t hese  lead c o e f f i c i e n t s  appears  t o  be a s u f f i c i e n t  compensa
t i o n  method. 

INTRODUCTION 

The i n t r o d u c t i o n  of lead terms i n t o  t h e  d r i v e  equat ions  o f  an e x t e r n a l  
hardware device  i n  o r d e r  t o  extend t h e  bandwidth o f  t h e  device  is  a common prac
t i ce  i n  f l i gh t - s imula to r  systems. The devices  are g e n e r a l l y  pos i t ion-dr iven  
se rvo  systems (a l though t h e  techniques  presented  h e r e i n  are no t  res t r ic ted t o  
pos i t ion-dr iven  systems) used t o  p re sen t  v i s u a l  o r  motion cues  t o  t h e  p i l o t  
of  t h e  f l i g h t  s imula to r ,  and compensation is desired t o  lower t he  t i m e  de l ays  
involved.  The p r a c t i c e ,  when carried out  i n  the  cont inuous domain ( i . e . ,  w i th in  
an analog-computer s i m u l a t i o n ) ,  amounts t o  open-loop cont inuous compensation. 
The compensator has t o  a t tempt  t o  act  l i k e  an inve r se  p l a n t  ( t h e  p l a n t  being 
t h e  hardware dev ice ) .  Such compensation had been s u c c e s s f u l l y  used i n  many 
s imula to r s  and was g e n e r a l l y  understood wi th in  t h e  s imula t ion  community. 

With the  advent  o f  d i g i t a l  s imula t ion ,  t h e  use of  lead terms was cont inued 
(refs. 1 and 2) .  However, u n l i k e  t h e  use  i n  analog s imula t ion  i n  which t h e  
compensation was e f f e c t i v e  w i t h i n  the  l i n e a r  ope ra t ing  range  o f  t h e  se rvo ,  t h e  
use  i n  d i g i t a l  s imula t ion  w a s  less e f f e c t i v e ,  p a r t i c u l a r l y  a t  low i t e r a t i o n  
rates. Moreover, t h e  problem is n o t  g e n e r a l l y  w e l l  understood wi th in  the  simu
l a t i o n  community. Indeed,  even t h e  case of no compensation ( i . e . ,  t h e  e f f e c t s  
o f  a d i g i t a l  d r i v e  on an analog-system response)  is n o t  w e l l  understood.  

T h i s  paper p r e s e n t s  t h e  d e r i v a t i o n  o f  t h e  dependence of t h e  Bode response 
upon d i g i t a l  sample rate f o r  t h e  fo l lowing  cases: 

Effects on f i r s t - o r d e r  l i n e a r  systems 

No compensation 
F i r s t - o r d e r  compensation 
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Effects on second-order l i n e a r  systems 

No compensation 
F i r s t - o r d e r  compensation 
Second-order compensation 

Bode p l o t s  f o r  each case a t  v a r i o u s  sample rates are a l s o  presented .  These 
p l o t s  may be used t o  determine t h e  inc reased  bandwidth ob ta inab le  f o r  d i g i 
t a l l y  dr iven  first- or second-order l i n e a r  systems through the  use  o f  open-loop 
lead compensation a t  s e l e c t e d  sample rates. I n  a c t u a l  p r a c t i c e ,  however, non
l i n e a r i t i e s  of t h e  s e r v o  systems,  such a s  v e l o c i t y  or a c c e l e r a t i o n  l i m i t s ,  are 
encountered,  and the  i n c r e a s e  i n  bandwidth i s  no t  as great as  t h a t  o f  the  
l i n e a r  system. 

SYMBOLS 

ze ro  o f  Z-transfer  func t ion  f o r  ou tpu t  o f  f i r s t - o r d e r  system GGoH(z) 

parameter o f  f i r s t - o r d e r  l i n e a r  model of pos i t ion-dr iven  se rvo ,  l/sec 

parameters  t h a t  determine the  z e r o  o f  Z- t ransfer  func t ion  f o r  ou tput  
o f  second-order system GGoH(z)  

system ou tpu t  va lue  a t  discrete t i m e  nT 

Laplace t ransform o f  system output  

system ou tpu t  as cont inuous func t ion  o f  t i m e  

Z-transform o f  system output  

system output  va lue  a t  discrete t i m e  nT dur ing  s teady  s ta te  

system output  as cont inuous func t ion  o f  t i m e  du r ing  s t eady  s ta te  

zero  o f  Z-transfer  func t ion  f o r  d i g i t a l l y  compensated second-order 
system output  c ( z >  

ze ro  o f  Z-transfer  func t ion  f o r  f i r s t - o r d e r  d i g i t a l l y  compensated 
second-order system output  c ( z >  

ze ro  o f  Z- t ransfer  func t ion  f o r  second-order d i g i t a l l y  compensated 
second-order system c ( z )  

d i f f e r e n t i a l  of  z 

c o e f f i c i e n t  o f  s i n e  term of  css(nT> of f i r s t - o r d e r  system 

c o e f f i c i e n t  0.f s i n e  term o f  csS(nT) of  second-order system 

c o e f f i c i e n t  o f  cos ine  term of  css(nT) of f i r s t - o r d e r  system 
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c o e f f i c i e n t  o f  cos ine  term of  css(nT> o f  second-order system 


c o e f f i c i e n t  o f  css(nT) of f i r s t - o r d e r  system 


c o e f f i c i e n t  of  csS(nT) o f  second-order system 


Laplace t r a n s f e r  func t ion  f o r  l i n e a r  model o f  pos i t ion-dr iven  servo  


Laplace t r a n s f e r  func t ion  o f  notch f i l t e r  


Laplace t r a n s f e r  func t ion  o f  zero-order hold 


Z-transform o f  G(s)GoH(s) 


Laplace t r a n s f e r  func t ion  of cont inuous compensator 


Z-transform o f  H(s) 


Laplace t r a n s f e r  func t ion  o f  op t imal  compensator 


imaginary p a r t  of  complex number 


index of  s imple po le s  o f  a Z- t ransfer  func t ion  

=g 

number o f  s imple p o l e s  of c ( z >  

index of  sample per iod 

dummy v a r i a b l e  f o r  z 

simple pole  of  Z- t ransfer  func t ion  

real p a r t  o f  complex number 

parameter related t o  damping parameter o f  second-order model of 
p o s i t  ion-driven se rvo ,  \I.l-T-i-

Laplace ope ra to r  

sample pe r iod ,  sec 

time, sec 

Laplace t ransform o f  d r i v e  s i g n a l  wi thout  compensation 

Z-transform of  u ( s > H ( s >  

normalized v a r i a b l e  combining sample per iod  and n a t u r a l  frequency of  
second-order model o f  pos i t ion-dr iven  se rvo  
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normalized frequency v a r i a b l e  

Z-transform o f  func t ion  wi th in  braces 

Z-transform ope ra to r  

dummy v a r i a b l e s  

damping parameter o f  second-order model o f  pos i t ion-dr iven  se rvo  

damping parameters  of  notch f i l t e r  

frequency of s i n u s o i d a l  d r i v e  s i g n a l ,  rad/sec 

notch frequency of  notch f i l t e r ,  r ad / sec  

n a t u r a l  frequency o f  second-order model of pos i t ion-dr iven  se rvo ,  
rad/sec 

secondary frequency o f  notch f i l t e r ,  rad/sec 

Abbreviat ions:  

DAC d ig i t a l - to -ana log  conver te r  

ZOH zero-order  hold 

SAMPLED DATA MODELS 

F igure  1 is a block diagram which p r e s e n t s  t he  g e n e r a l  form of t h e  sampled 
d a t a  model used i n  d e r i v i n g  t h e  s t e a d y - s t a t e  s i n u s o i d a l  sequence response o f  
t h e  d i g i t a l l y  compensated pos i t ion-dr iven  servo .  The d r i v e  s i g n a l  is genera ted  
wi th in  t h e  d i g i t a l  computer. Examples o f  such d r i v e s  are an a i rcraf t  a l t i t u d e  
s i g n a l  f o r  a t e r r a i n  model board,  a t a r g e t  image azimuth ang le  for an image 
p r o j e c t o r  g i m b a l ,  and a motion base v e r t i c a l  p o s i t i o n .  Q u i t e  o f t e n ,  v e l o c i t y  
and a c c e l e r a t i o n  terms e x i s t  n a t u r a l l y  w i t h i n  t h e  s imula t ton  program, and t h e  
necessary  terms t h e r e f o r e  e x i s t  n a t u r a l l y  f o r  lead compensation. When these 
terms do not  e x i s t ,  it is  p o s s i b l e  t o  d e r i v e  and inc lude  new equat ions  without  
r e s o r t i n g  t o  d i f f e r e n t i a t i o n  of  the p o s i t i o n  s i g n a l s .  ( I n t u i t i v e l y ,  d i g i t a l  
d i f f e r e n t i a t i o n  would n o t  add lead informat ion  s i n c e  the  process  is  dependent 
on ly  on past and p resen t  va lues  of  p o s i t i o n . )  

Once t h e  d r i v e  s i g n a l  i s  cons t ruc t ed  w i t h i n  t h e  d i g i t a l  computer, it is  
ou tpu t  t o  t h e  pos i t ion-dr iven  se rvo  through a d ig i t a l - to -ana log  conve r t e r  ( D A C ) ,  
a sample-hold device ,  a t  a f i x e d  i t e r a t i o n  ra te  o f  1/T. I n  many a p p l i c a t i o n s  
i t  is necessary t o  i n s e r t  an ana log  notch f i l t e r  between the  DAC and t h e  se rvo  
t o  remove t h e  s t a i r - s t e p p i n g  effect  of t h e  DAC ( r e g a r d l e s s  of  whether lead com
pensa t ion  is  being used or n o t ) .  The notch f i l t e r ,  w i t h  t h e  notch set  a t  a 
frequency o f  1/T Hz, w i l l  be ignored for t h e  purposes  o f  t h i s  paper ,  even 
though it has  some effect  on the  se rvo  response.  The r a t i o n a l e  f o r  i gnor ing  
t h i s  effect  i s  d iscussed  i n  a l a t e r  s e c t i o n .  
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The pos i t ion-dr iven  se rvo  is  modeled as a l i n e a r  first- or second-order 
uni ty-gain system by ignor ing  non l inea r  c h a r a c t e r i s t i c s  such as  ampli tude,  
v e l o c i t y  and a c c e l e r a t i o n  l i m i t s ,  f r i c t i o n ,  s t i c t i o n ,  and so f o r t h .  

The compensation method considered he re  h a s  been t h e  a p p l i c a t i o n  of  a con
t inuous  method t o  a d i s c r e t e  system ( i . e . ,  t h e  compensator has  a t tempted t o  
cance l  t h e  po le  or po les  of  t h e  cont inuous system on ly ) .  F igu res  2 ,  3,  and 4 
show t h e  s p e c i f i c  forms o f  t h e  compensator f o r  t h e  f i r s t - and second-order 
systems. 

S a l z e r ,  i n  r e fe rence  3, proves t h a t  a s i n u s o i d a l  i n p u t  sequence o f  angular 
frequency W (where W is  less than  t h e  Nyquist f requency) ,  when opera ted  
upon by a d i s c r e t e  t r a n s f e r  f u n c t i o n ,  r e s u l t s  i n  a s i n u s o i d a l  ou tput  sequence 
which is  of  t h e  same frequency and which has  an  ampli tude and phase r e l a t i o n 
s h i p  t o  t h e  i n p u t .  The d e r i v a t i o n  o f  t h e s e  ampli tude and phase r e l a t i o n s h i p s  
f o r  t h e  first- and second-order systems, both without  compensation and wi th  
compensation, are presented  i n  appendixes A and B. 

BODE RESULTS 

Bode responses  are presented i n  f i g u r e s  5 t o  12. The ampli tudes and phases  
of  t h e  s t eady- s t a t e  sequence responses  t o  s i n u s o i d a l  sequence i n p u t s  are given 
as a func t ion  of  normalized frequency (normalized t o  t h e  n a t u r a l  frequency of  
t h e  servo)  f o r  va r ious  normalized sample pe r iods  (normalized t o  c y c l e s  of  t h e  
n a t u r a l  frequency of  t h e  se rvo  per  sample).  

F i r s t -Order  Linear  System 

Figure  5 p r e s e n t s  t h e  Bode p l o t s  a t  va r ious  sample pe r iods  f o r  t h e  cont inu
ous f i r s t - o r d e r  l i n e a r  system, t h e  d i g i t a l l y  d r iven  f i r s t - o r d e r  l i n e a r  system 
wi thout  compensation, and t h e  f i r s t - o r d e r  compensated system. 

No compensation.- The d i f f e r e n c e s  i n  response between t h e  d i g i t a l l y  d r iven  
system without  compensation and t h e  cont inuous system occur  i n  both ampli tude 
and phase. However, t h e  major d i f f e r e n c e s  occur i n  phase; i n  fact ,  t h e  phase 
lag of  a zero-order hold a lone  is  -180(WT/2T) deg. 

F i r s t -o rde r  compensation.- As may be seen i n  f i g u r e  5 ,  compensation of  t h e  
d i g i t a l l y  dr iven  system can be very  e f f e c t i v e .  Indeed, a t  i t e r a t i o n  ra tes  above 
f i v e  samples pe r  cyc le  (aT/2T < 0.21, t h e  compensated response i s  s u p e r i o r  t o  
t h e  cont inuous system response.  However, ope ra t ing  ranges  must be r e s t r i c t e d  

w 1 2T 
t o  f r equenc ie s  below t h e  Nyquist frequency 

Second-Order Linear System 

Normalization t o  remove t h e  effects  of  t h e  damping parameter of  t h e  
second-order l i n e a r  system on t h e  Bode response w a s  n o t  poss ib l e .  Therefore ,  
t h r e e  damping f a c t o r s  are t r e a t e d  (5 G / 2 ,  0.85, and 0.45) .  
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Figures 6 ,  7, and 8 present the Bode plots for the continuous second-order 
linear system with damping factors of @/2, 0.85, and 0.45, respectively, and 
for the digitally driven system without compensation and with first-order com
pensation. The plots are presented at various sample periods. 

No compensation.- The differences in response, shown in figures 6, 7, 
and 8, between the digitally driven system without compensation and the continu
ous system occur in both amplitude and phase. However, the major differences 
occur in phase. 

If an attempt were to be made to estimate the frequency and damping of a 
linear second-order system by driving the system sinusoidally from a digital 
computer in order to obtain the Bode response, the estimates would be low. For 
example, the estimates that could be obtained from the compensation cases of 
figure 6 are presented in table I. 

First-order compensation.- As may be seen in figures 6 ,  7,and 8,improve
ments in phase lag obtained through compensation are accompanied by increased 
gains. Higher iteration rates (lower values of WnT/2T) improve the phase 
response but incur increased gains (greater than unity). It appears from com
paring the three figures that first-order compensation of second-order systems 
will be more effective for highly damped systems, thereby giving more improve
ment in phase lag with less increase in gain. 

Second-order compensation.- Unlike first-order compensation, second-order 
compensation of the second-order system yields Bode responses that are practi
cally independent of the damping parameter. Figure 9 presents the Bode plots
for the second-order digital compensation of the second-order linear system. 
For the three damping factors selected (@/2, 0.85, and 0.45), the amplitude 
and phase responses overlap too closely to differentiate among them on the 
scales of figure 9 .  As may be seen from figure 9, second-order compensation 
obtains large improvements in both gain and phase lag for the iteration rates 

1 2n
shown at operating frequencies below the Nyquist frequency 

NOTCH-FILTER EFFECTS 


The insertion of an analog notch filter (ref. 4)  between the DAC and the 
servo has been mentioned previously. The filter is of the form 

The notch frequency WN is set at 2v/T while the secondary frequency 02 
is usually set at about 1/3 WN. Normalized to the scales of figures 5, 6, 7, 
8, and 9 ,  the preceding frequencies become "/a = 2v/aT, WN/W~= 2v/~nT and 
q / a  = 27~/3aT, WZ/W~= 21~/3wnT. Therefore, even the secondary frequency 
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1 21T 1 2R
approaches t h e  Nyquist f requency and --) and makes a thorough analy

(2 a T  2 wnT 
sis d i f f i c u l t  and unnecessary.  F igure  10 p r e s e n t s  t h e  Bode response of  t h e  
t y p i c a l  notch f i l t e r .  The effects o f  the notch f i l t e r  on t h e  response of  t h e  
l i n e a r  se rvo  fo l low approximately t he  supe rpos i t i on  theorem, and the  f i l t e r  
affects  both the  uncompensated and t h e  compensated system response i n  t h e  same 
manner. Thus, t h e  e f f e c t i v e n e s s  o f  compensation, as d iscussed  from f i g u r e s  5 
t o  9 ,  is p r a c t i c a l l y  una f fec t ed  by t h e  i n c l u s i o n  o f  no tch  f i l t e rs  i n  t h e  sys
t e m .  I n  any case, t o t a l  system response may be approximated, i f  des i red ,  
through t h e  use  o f  t he  supe rpos i t i on  theorem. 

IMPROVED COMPENSATION 

The compensation method considered he re  h a s  been t h e  a p p l i c a t i o n  o f  a con
t inuous  method t o  a discrete system ( i . e . ,  t he  compensator h a s  a t tempted t o  
cance l  t h e  pole  or po les  o f  t h e  cont inuous system o n l y ) .  An i n t u i t i v e l y  bet ter  
compensator of  t h e  discrete  system would be t h e  i n v e r s e  o f  t h e  zero-order hold 
and t h e  p l a n t .  I n  t h e  cont inuous  case, 

I n  t h e  discrete  case, 

The r e a l i z a t i o n  o f  H o ( s ) ,  even wi th in  a d i g i t a l  computer, is  no t  poss ib l e .  
However, approximations are a v a i l a b l e .  For example, t h e  two-term ser ies  expan
s i o n  f o r  esT y i e l d s  

T s T  
- =  = l + s T  
GOH(S) 1 1 

and t h e  three-term series expansion y i e l d s  

I + s T + -s2T2 
T 2 
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Use o f  even t h e  two-term approximation i n c r e a s e s  t h e  complexity of t h e  
compensation, however. A f i r s t - o r d e r  p l a n t  would r e q u i r e  second-order 
compensation : 

T
HO(s) = 1 + s(: + T) + S2 

3 

and a second-order p l a n t  would r e q u i r e  th i rd -o rde r  compensation: 

HO(S) = 1 + s 

Use of  t h e  three- term approximation invo lves  even more complexity.  For 
t h e  f i r s t - o r d e r  p l a n t ,  

Ho(s) = 
I m  \ 

= 1 + s(; + 5) + 2(L + F) + s3F- ;) + . . . 
2a 4a 

and f o r  t h e  second-order p l a n t ,  

25 T = 1 + 
+ ?) + wn 4 

Examination of  t h e  responses  shown i n  f i g u r e s  5 and 9 for p a r t i c u l a r  va lues  
of a ,  wn,  and T may r e v e a l ,  i n  most p r a c t i c a l  a p p l i c a t i o n s ,  t h a t  t h e s e  
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i n c r e a s e s  i n  complexity are no t  warranted.  However, t h e  a d d i t i o n a l  lead sug
gested by these approximations wi thout  a change of o r d e r ,  as shown i n  table  11, 
can be analyzed with t h e  p rev ious ly  developed sample-data methods. 

F igure  11 p r e s e n t s  t h e  Bode p l o t s  f o r  t h e  f i r s t - o r d e r  system w i t h  no com
pensa t ion ,  and w i t h  t he  three d i f f e r e n t  f i r s t - o r d e r  compensators of  t a b l e  11. 
Figure  12 p r e s e n t s  the comparable r e s u l t s  For t h e  second-order l i n e a r  system 
w i t h  a damping parameter o f  c / 2 .  

The a d d i t i o n a l  phase improvement presented i n  f i g u r e s  11  and 12 i s  obta ined  
from t h e  a d d i t i o n a l  lead, bu t  a t  t h e  expense of  g a i n  d i s t o r t i o n .  It is  the re 
f o r e  recommended t h a t ,  r a t h e r  t han  a t t empt ing  t o  cance l  t h e  system po les  or  t o  
approximate t he  inve r se  hold-plant  system, one should empi r i ca l ly  determine t h e  
lead c o e f f i c i e n t s  of t h e  compensator, poss ib ly  by us ing  the  va lues  of  table I1 
as  s t a r t i n g  va lues .  Empir ical  de te rmina t ion  of  t h e  c o e f f i c i e n t s  may a l low f o r  
response improvements i n  l i g h t  of  t h e  n o n l i n e a r i t i e s  of  t h e  se rvo  system, i n  
a d d i t i o n  t o  improvements above and beyond those  obtained from us ing  estimates 
o f  t h e  cont inuous system poles .  

CONCLUDING REMARKS 

The dependence of  t h e  Bode response upon d i g i t a l  sample rate f o r  first-
and second-order l i n e a r  systems,  both w i t h  and without  open-loop compensation, 
has  been der ived .  Bode p l o t s  t h a t  may be used t o  determine t h e  increased  band
w i d t h  ob ta inab le  f o r  d i g i t a l l y  d r iven  first- o r  second-order systems through 
lead compensation were then presented .  The examination o f  t h e s e  p l o t s  revea led  
t h e  fol lowing:  

The effects of  d r i v i n g  a cont inuous  first- or  second-order system from a 
d i g i t a l  computer are manifested c h i e f l y  wi th in  the  Bode response of  t h e  system 
as changes i n  phase. Attempts t o  estimate t h e  n a t u r a l  frequency and damping 
of  a second-order system from Bode responses  obta ined  i n  such a manner ( i . e . ,  
d i g i t a l l y  d r iven )  are l i k e l y  t o  r e s u l t  i n  low estimates. 

The i n t r o d u c t i o n  o f  lead terms i n t o  t h e  d r i v e  equa t ions  wi th in  t h e  d i g i t a l  
computer so as t o  extend t h e  bandwidth of  t h e  system has  been shown t o  be effec
t i v e  a t  ope ra t ing  f r equenc ie s  below t h e  Nyquist frequency. Indeed,  f i r s t - o r d e r  
lead compensation o f  f i r s t - o r d e r  l i n e a r  systems, and second-order lead compen
s a t i o n  o f  second-order systems,  g i v e  e x c e l l e n t  improvements i n  both phase and 
ga in  response ,  p a r t i c u l a r l y  a t  i t e r a t i o n  rates above f i v e  samples pe r  c y c l e  of  
t h e  n a t u r a l  frequency of t h e  system. F i r s t - o r d e r  lead compensation o f  second-
o rde r  systems g i v e s  improvement i n  phase response tha t  is accompanied by 
i n c r e a s e s  i n  ga in  response (greater than u n i t y ) .  

The improvements i n  phase,  wi th  accompanying g a i n  changes,  may n o t  be 
f u l l y  r e a l i z e d  i n  p r a c t i c a l  a p p l i c a t i o n s  s i n c e  n o n l i n e a r i t i e s  o f  t h e  se rvo  sys
tems (such as v e l o c i t y  l i m i t s ,  a c c e l e r a t i o n  l i m i t s ,  f r i c t i o n ,  e tc . )  o f t e n  l i m i t  
the p o s s i b l e  i n c r e a s e s  i n  system bandwidth. 
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Attempts t o  approximate t h e  i n v e r s e  hold-plant  d i s c r e t e  compensator may I
be unwarranted i n  terms b j i r o v e d  response.  EmpirfGal de te rmina t ion  of  l ead  
c o e f f i c i e n t s  f o r  t h e  compensator appears  t o  be more p r a c t i c a l .  

Langley Research Center 
Nat iona l  Aeronaut ics  and Space Adminis t ra t ion 
Hampton, VA 23665 
August 8 ,  1977 
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APPENDIX A 

DERIVATION OF BODE RESPONSES FOR FIRST-ORDER LINEAR SYSTEM 

Th i s  appendix d e r i v e s  Bode responses  f o r  t h e  f i r s t - o r d e r  l i n e a r  system. 
The f i r s t - o r d e r  system is  t o  be solved f o r  t he  case of no compensation& t h e  

c
case o f  f i r s t - o r d e r  compensation. 

No Compensation 

The Bode response o f  a f i r s t - o r d e r  open-loop l i n e a r  system d r iven  by a 
d ig i t a l - to -ana l0  conve r t e r  (DAC) may be obtained d i r e c t l y  from t h e  s u b s t i t u 
t i o n  of z = eJWF i n t o  t h e  Z-transform o f  t h e  system ( r e f .  5) as fol lows:  

Given 

a 
G ( s )  

s + a  

then 

Since  

Amplitude = \ lR2 + I2 

11 
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and 


Phase = tan-l (:) 
then, finally, 


and 


-sin ,UT
Phase tan-l 

COS UT - e-aT 

First-Order Compensation
_ -

A block diagram of the model-tobe used in deriving the Bode response of 
the first-order digital compensation of the first-order linear system is shown 
in figure 2. The drive signal is a sine wave, and the compensator is the 
inverse of the plant. The Z-transform of the system output is 

and is derived in the following manner: 


Given 


s + a
H(s) = -

a 

12 
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I then 

Now l e t  y = w/a and x = a T  so  t h a t  

1yz(z - cos  xy + - s i n  xy
Y

uH(z) = 
( z  - e jxY)(z  - e- jxy)  

Given 

s + a  

then 

1 
Now l e t  A = -cos xy + - s i n  xy so  t h a t ,  f i n a l l y ,

Y 

The Bode response f o r  t h e  system w i l l  be obtained from t h e  inve r se  
Z-transform of t h e  system output  c ( z ) .  The method of s o l u t i o n  used t o  s o l v e  
t h e  no-compensation case, t h a t  is ,  s u b s t i t u t i o n  o f  z = eNT i n t o  H ( z ) G G o H ( z ) ,  
would not  y i e l d  t h e  c o r r e c t  r e s u l t s  f o r  t h i s  system; rather,  t h e  r e s u l t s  would 
be a p p l i c a b l e  t o  t h i s  system wi th  an a d d i t i o n a l  sampler placed ahead o f  H ( s ) .  
The i n v e r s e  Z-transform is  obta ined  by use of  t h e  r e l a t i o n  (from re f .  5)  

13 
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Inversion of 

results in 


The first term in the preceding equation is a transient term that is approxi

mately zero at steady state (large values of n). Let 


E1 = 1 - Ae-X + (A - e-X) cos xy 

F1 = -(A + e-X) sin xy 

Then 

css(nT) = Gl(E1 sin nxy + F1 cos nxy) 



APPENDIX A 

where css(nT) i m p l i e s  large v a l u e s  of n .  By p o l a r  convers ion ,  t h e  ampli tude 
and phase lag of css ( t ) ,  t h e  sine-wave r e c o n s t r u c t i o n  through the  p o i n t s  of  
css(nT),  now become 

Amplitude = G1JE12 + F1* 

and 

F1 
Phase = 57.3 tan-’ -

E1 
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DERIVATION OF BODE RESPONSES FOR SECOND-ORDER LINEAR SYSTEM 


This appendix derives Bode responses for the second-order linear system. 

The second-order system is to be solved for the cases of no compensation, 

first-order compensation, and second-order compensation. 


No Compensation 


The Bode response of a second-order open-loop linear system driven by a 
digital-to-analo converter (DAC) may be obtained directly from the substitu
tion of z = ejUf into the Z-transform of the system as follows: 

Given 


then 


Let x = wnT and r d q so that 

Let 


B = 1 - e-Sx cos rx - -5 
e-5x sin rx 

r 

and 
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t h e n  

S u b s t i t u t i o n  of  z = ejwT y i e l d s  

( B  cos UT + C)  + jB sin wT 
G G ( ) H ( e j q  = 

(e-26x + COS 2wT - 2e-SX cos r x  cos wT) + j(sin 2wT - 2e-cX cos r x  sin UT) 

L e t  

01 = e-2<x + cos 2wT - 2e'EX cos rx cos UT 

and 

B = s i n  2wT - 2e-cX cos r x  s i n  wT 

As a r e s u l t ,  

[a(B cos wT + C )  + BB s i n  UT] + j [aB s i n  wT - B ( B  cos wT + C)]-- -~ 

012 + $2 

F i n a l l y ,  

1

I

Amplitude = Jb(Bcos UT + C)  + f3B s i n  wTI2 + [aB s i n  wT - B(B cos UT + C d 2  
012 + $2 

and 

Phase = tan-I  
CrB s i n  wT - $(B  cos (UT + C> 

cos wT + C)  + BB s i n  wT1 
17 
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Firs t -Order  Compensation 

F igu re  3 p r e s e n t s  t h e  block diagram of  t h e  model t o  be used i n  d e r i v i n g  
t h e  Bode response o f  t h e  f i r s t - o r d e r  d i g i t a l  compensation o f  t h e  second-order 
l i n e a r  system. The Z-transform of  t h e  system output  is  

and i s  derived i n  t h e  fo l lowing  manner: 

Given 

then  

L e t  y U/Wn and x = UnT s o  t h a t  

1 z - cos xy + - s i n  xy
25Y

uH(z) = 

Since  

and i f  D1 is def ined  as 

1 
D1 = -COS XY + - s i n  xy

25 Y 

18 
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then, finally, 


Second-Order Compensation 


The block diagram of the model to be used in deriving the Bode response
of the second-order digital compensation of the second-order linear system is 
shown in figure 4. The Z-transform of the system output is derived in the 
following manner: 

Given 


then 


From Z-transform theory (ref. 51, 

19 
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Let y = w/wn and x = wnT. Then 

1 - y22EYZ(" - cos xy + -sin xy
25Y 

Let 


1 - y2
D2 = -COS XY + -sin xy

25Y 

As a result, 


Since G(s) and GOH(S) are unchanged from he first-order compensa, .oncase, 
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Finally, 


Inverse Z-transform of Second-Order Linear System 


The difference between equation (1) and equation (2) lies wholly in the 
difference ( f o r  a given x, y, and 6)  in the constants D1 and D2. There
fore the Bode response can be derived from the equation f o r  either case, with 
the other case being obtained by a mere change of subscript. Let D = D1 o r  D2, 
depending on the desired compensation; then 

Inversion of c(z) results in 


+ [Transient terms that are (functions x e-nSx)] 

At steady state, 


Let 


I (3) 
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Then 


= G*([B sin nxy + (DB + C) sin (n - 1)xy + DC sin (n - 2)xyJ 

- ~-SX(B sin [(n + 1)xy + rx] + B sin [(n + 1)xy - rx] 

+ (DB + C) sin (nxy + rx) + (DB + C) sin (nxy - rx) 

+ DC sin [(n - 1)xy + ~ X J- DC sin [(n - 1)xy - rx]} 

+ 	e-2cx[B sin (n + 2)xy + (DB + C) sin (n + 1)xy + DC sin nxy] ) 
(Equation continued on next page) 

22 
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= G2(sin nxy[B + (DB + C )  cos  xy + DC cos  2 x 4  

- cos nxy [(DB + C) s i n  xy + DC s i n  2xy] 

- 2e-cX cos  rx[sin nxy(B cos  xy + DB + C + DC COS X Y )  

- cos nxy(DC s i n  xy - B s i n  xyg  

+ e-25x s i n  nxy[B cos 2xy + (DB + C )  cos  xy + DC] 

+ e-2cx cos  nxy[B s i n  2xy + (DB + C )  s i n  xy]} 

F i n a l l y ,  

css(nT) = Gz(E2 s i n  nxy + F2 cos  nxy) 

where 

E2 = [B + (DB + C) COS XY + DC COS 2xy] 

+ e-25x[B cos  2xy + (DB + C >  cos xy + DC] 

F2 = - [(DB + C )  s i n  xy + DC s i n  2xy) - 2e'cX cos  rx s i n  xy(B - DC) 

+ e-2cx[B s i n  2xy + (DB + C >  s i n  xy] 
t 


i 
and, from equat ion  (31, 

23 
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Therefore ,  t h e  ampli tude and phase lag of c s s ( t ) ,  t h e  sine-wave recon
s t r u c t i o n  through t h e  sample p o i n t s  of c,,(nT), are then  

Amplitude = G 2 J m 

and 

F2 
Phase = 57.3 tan-1 -

E2 
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TABLE I.- ESTIMATES OF FREQUENCY AND DAMPING FOR A 

CONTINUOUS SECOND-ORDER LINEAR SYSTEM 

per iod  
Frequency 
estimate 

Damping 
est i m a  te 

0.05 0.9 0.65 
. I  .825 .61 
.2 .715 .58 

Continuous 1 .o .707 1 

TABLE 11.- COMPARISON OF COMPENSATOR TRANSFER FUNCTIONS 

Compensation 
method pirs t -order  l i n e a r  Second-order l i n e a r  

system system 

I 
P l a n t  p o l e s  1 

+ (;) 1 + s(z)+ 2($) 

P l a n t  po le s  + two-
term approximation 
of hold 

P l a n t  po le s  + th ree-
term approximation 
o f  hold 

1 + s(i + T) l + s - + T(:: ) + s 2 -
+ F) 

1 + 
s(; + 5) 
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Figure 1 . - General form of sampled data model. 
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F i g u r e  2.- F i r s t - o r d e r  d i g i t a l  compensation of f i r s t - o r d e r  l i n e a r  system. 
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Figure 3.- F i rs t -order  d i g i t a l  compensation of second-order l i n e a r  system. 
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Figure  4.- Second-order d i g i t a l  compensation of second-order l i n e a r  system. 
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Figure 7.- Firs t -order  compensation of second-order l i n e a r  system w i t h  5 = 0.85. 
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Figure 9.- Second-order compensation of second-order linear system with 
5 = 0.45, p / 2 ,  and 0.85. 
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Figure 11.- Compensation comparisons for first-order linear system. 
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Figure  12.- Compensation comparisons for second-order l inear  system. 
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